Ultrametric Subsets with Large Hausdorff Dimension

نویسنده

  • MANOR MENDEL
چکیده

It is shown that for every ε ∈ (0, 1), every compact metric space (X, d) has a compact subset S ⊆ X that embeds into an ultrametric space with distortion O(1/ε), and dimH(S) > (1− ε) dimH(X), where dimH(·) denotes Hausdorff dimension. The above O(1/ε) distortion estimate is shown to be sharp via a construction based on sequences of expander graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A GEOMETRIC STUDY OF WASSERSTEIN SPACES: ULTRAMETRICS by Benôıt

— We study the geometry of the space of measures of a compact ultrametric space X , endowed with the L Wasserstein distance from optimal transportation. We show that the power p of this distance makes this Wasserstein space affinely isometric to a convex subset of l. As a consequence, it is connected by 1 p -Hölder arcs, but any α-Hölder arc with α > 1 p must be constant. This result is obtaine...

متن کامل

A Characterization of Distance between 1-Bounded Compact Ultrametric Spaces through a Universal Space

The category of 1-bounded compact ultrametric spaces and non-distance increasing functions (KUM’s) have been extensively used in the semantics of concurrent programming languages. In this paper a universal space U for KUM’s is introduced, such that each KUM can be isometrically embedded in it. U consists of a suitable subset of the space of functions from [0, 1) to IN, endowed with a “prefix-ba...

متن کامل

ar X iv : m at h / 06 05 13 1 v 1 [ m at h . O A ] 4 M ay 2 00 6 Trees , Ultrametrics , and Noncommutative Geometry

Noncommutative geometry is used to study the local geometry of ultrametric spaces and the geometry of trees at infinity. Connes's example of the noncommutative space of Penrose tilings is interpreted as a non-Hausdorff orbit space of a compact, ultrametric space under the action of its local isometry group. This is generalized to compact, locally rigid, ultrametric spaces. The local isometry ty...

متن کامل

Trees, Ultrametrics, and Noncommutative Geometry

Noncommutative geometry is used to study the local geometry of ultrametric spaces and the geometry of trees at infinity. Connes’s example of the noncommutative space of Penrose tilings is interpreted as a non-Hausdorff orbit space of a compact, ultrametric space under the action of its local isometry group. This is generalized to compact, locally rigid, ultrametric spaces. The local isometry ty...

متن کامل

ar X iv : m at h / 06 05 13 1 v 2 [ m at h . O A ] 1 1 Ju n 20 07 Trees , Ultrametrics , and Noncommutative Geometry

Noncommutative geometry is used to study the local geometry of ultrametric spaces and the geometry of trees at infinity. Connes's example of the noncommutative space of Penrose tilings is interpreted as a non-Hausdorff orbit space of a compact, ultrametric space under the action of its local isometry group. This is generalized to compact, locally rigid, ultrametric spaces. The local isometry ty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012